CS4997 — Undergraduate Honours Thesis
CFlat: An Improved C++

By
Adam Richard

Supervisor: Bradford G. Nickerson
University Of New Brunswick, Faculty Of Computer Science

Due: 12 August 2004

Abstract

This thesis presents a new programming language called CFlat. CFlat is based on
C++, and is meant to improve on C++ by making it more powerful and easier to use.

CFlat is not backwards compatible with either C or C++, but it is similar enough
to C++ that a program could be easily written to translate C++ to CFlat. The design
philosophy followed here is to remove redundant and/or unnecessary features and have
C++ code trandated to CFlat, rather than base the language on existing code. The final
result is both asimpler compiler and simpler code, which results in fewer bugs.

The thesis report describes the 31 features of CFlat that differ from C++. Thus,
knowledge of C++ isa prerequisite of fully understanding thisthesis. The pros and cons
of each feature are discussed in light of the current literature, and the decisions to add to
or change C++ are explained with the principle design goals of simplicity and power in
mind.

For the experimental component of the thesis, | have written a simple compiler,
using lex and yacc, to implement 16 of these 31 features. The features implemented have
been biased toward scientific/data processing style programming (although they are also
useful in other programming domains). The object-oriented features of CFlat are left out
to keep the compiler ssmple. The compiler transates partial CFlat to C++, which can be
compiled to an executable program using an existing C++ compiler (gcc was used for
testing). Six small test programs, totaling 131 lines of code, were written to test the
compiler. The programs test the array processing, for loops, select statement, and 1/0, as

well as compile-time error detection.

Table Of Contents

O 10T [F o o o S 1
2. TNEDESIGN OF CHIAL......ccueieeieieeie sttt s 2
2.1. DeSIgN PhilOSOPNYc..ceiiiiiiieie e 2
2.2. Influence Of Other [aNQUAGES..........ccoiiiiriee e 7

3. SUMMary Of M@JOr FEBLUIES.........ccueiuiriieiiiti ettt eeas 9
4. FEAUreS IN DELAIL.........ooiiieiiiiee e et 11
4.2, Lang iNCIUAE FIlE.... oo 11
A ¥ 1 o S PRTPR 12
4.2.1. FUNCLION HEAENS.........eeceeeie ettt sne s e 12
4.2.2. NESLEA FUNCLIONS.......ceiiieiiie ettt sttt nee e 12
4.2.3. FUNCLIONS @S ODJECLS......c.eeeiecieiieecieie ettt nne e 13
4.2.4. In-place Overloaded FUNCLIONS...........ccoiiiiieeiececee e 14
4.2.5. Operator OVErlOading.........ccoeieeieereiieeee e esee e es e ae e sae e seesneeas 16
4.2.6. User-Defined OPEratorsS........coiueiiiieiie e seeesis et ste s sre e 17

LN = V£ SRR 18
4.3.1. Array AdItiONS.......cccueeiieeiie et 18
4.3.2. Array RANGE OPEIELON.........uviiiiieeieiiieeesieessssiee e s sieesssssree s ssee e snseessssessssneens 20
4.3.3. N-DASEA ATTAYS....ceeieeieiteeteee ettt et s sae e e e eneens 22
e N g W0 0= = o SRR 23
4.3.5. Stack-dynamic arrayS as abuilt-in type.........ccooerieiinineneeeee e 24
4.3.6. ArTay OPEraLiONS.......ccveeiuiieieieiiiesreesteeseeesreesaeessaeessseesreesaeearseessseesseeennns 25

4.4. Program COntrol CONSLIUCES........c..eeereerierierieeeeiesie st e 27
4.4.1. Switch and SEleCt StALEMENES..........ovieiiireeree et 27
4.4.2. Multiple relational OPEralorsS..........ueiireeiereeie e 29
A.4.3. FOT [OOPS. ... cteeueeieeeeete ettt sttt sttt bbbt e bbb e e benreene e 31
4.4.4. FOr EBCH LOOPS......ccitiiuiiiieiieieiiesie sttt 32

4.5. INPUL 8N OULPUL. ...ttt sb e 33
4.5.1. UNAY [/O OPEIEIOIS.....ceiiuieieerieriesieeiiesie sttt sttt s st see e 33
4.5.2. Declarations in iNPUt StAEEMENTS..........eeirieierieie e 34

4.6. Other MinOr ChanQES.........coveiieeieieesieesteeieseessaeseesteesseeeeseesreesseesseesesneessaesseens 34
4.6.1. Array declarations — square bracket placement............ccccovevevieeveececceneennnns 34
4.6.2. NESLEA COMIMENES......veiviriiriieiieriesie sttt sr e b se e s st e b 34
4.6.3. DIVISION....cutiieieie et et esieeseeeeeste e e eeessaeeseesseesneeaseesneeaseneseessaesseessensseessessseens 35
4.6.4. floating-poiNt CONSLANES.........ccveiiieiieiiesie ettt e e e nneeas 36
4.6.5. ASSIGNMENT OPEIELOT.......ccveeeeeieeesrieieeeeseeseesseesseeeesseesseessesneeseesseesseessessnns 36
4.6.6. Operators for POINLEYS...........c.ciieiicie et 37
4.6.7. PUDlIC DY defallt..........c.coeeieceeceeece e e 37
4.6.8. FEWer IMPIICIT CASES.......cccieiieciie ettt e e nre e 38
4.6.9. Case elsetoreplace defaull............cccoovveieiiieie e 39

5. CHEL 0.1 COMPILEN.......oiiiie ettt et e e e sr e enteesbeesnneenneas 40
6. EXAMPIE PrOGIraMIS.....c.eeeivieieeciee sttt ettt s e b e s re e b e e b e e neeneereenneenns 43
7. Conclusion and fULUre QOAIS.........ccuoiieiiriiiie e 48
8. REFEIBICES.ottt ettt st bbbt b e nae e 50

Appendix A. Features That Break CH.........oooiiiiiieece e 51

AppendiX B. CFlat 0.1 GIramIMEScccocueieereeieeieenie e see e see e seesesssee st neesseseesseenes 53
Appendix C. CSA997 SUMMENY SNEEL.........occiiiiieiere et 55
List Of Tables

Table 1. Summary of CFlat language features and comparison to C++.........cccoveveerieennnne 9
List Of Figures

Fig. 1. FUNCLIONS @S ODJECES......cccuecieciecie ettt st e e este e enne s 13
Fig. 2. Demonstration of writing in-place overloaded functions.............c.ccceveeienenieenne. 15
Fig. 3. > operator defined iN terMS Of <........ccooieiiiiiece e 17
Fig. 4. Implementing arrays as subscripts with an overloaded operator............ccccceevernnne 21
Fig. 5. Function generated by the compiler for the array operation “A * 2"..........cc.c....... 26
Fig. 6. Invalidin Cor C++touseastring in aswitCh..........cccccvevviiiiie e 27
Fig. 7. The .. operator in Case StaleMENTS..........ceiveeiieeiee et sneens 29
Fig. 8. A whileloop being used in place of afor [00p..........ccccvevevieiiesicie e 31
Fig. 9. Sample generator function to iterate through the integers 1 to 10...........cccccveeeeee 32

Fig. 10. CFlat 0.1 compiler architeCtUre............ccueeiuieiiiee e 42

1. Introduction

This document describes a new programming language called CFlat. CFlat is
based on C++, but is meant to be more powerful, more flexible, simpler, easier to use,
and safer. Many people believe that the first two criteria contradict the third and fourth.
Hopefully, after reading this document, they will believe otherwise.

CFlat is not backwards-compatible with either C++ or C. That is, C++ code is not
necessarily CFlat code. | believe it isbetter, in the long run at least, to make a better
language than could be made if that restriction of backwards compatibility were in place.

The previous note need not imply that programmers wanting to migrate from C++
to CFlat will need to rewrite al their code. The languages are meant to be similar;
therefore, it should not be a great task to write a compiler (if it may be called that) to
convert C++ codeto CFlat. Infact, | intend the CHlat standard library to be almost
identical to the C++ Standard Template Library that programmers have become
accustomed to (the language differences would warrant afew changes, as the reader
should soon see). This conversion program's first use and test could be to convert the

C++ standard library to CFlat.

2. The Design Of CFlat
2.1. Design Philosophy

The purpose of a programming language is to act as an intermediary between the
human (programmer) and the computer's native language. As such, humans reading code
in a programming language should be able to easily understand it, almost asif they were
reading anovel. Programmerswriting code in it should be able to quickly know how to
perform a certain task in the language, without having to deal with low-level details
unless they choose to. Tasks that are conceptually simple should be simple to code.

Now, the above does not mean that the language should do everything. When |
state that it should be understandable and easy to write codein, | am referring to after the
applicable library code has been written. That is, if the language constructs are such that,
after the appropriate library code isin place, agiven program can be written simply and
understandably, and also that library code isitself simple and understandable, then the
language has doneitsjob. If not, it hasn't. Thejob of alanguage, then, isto provide
facilities such that libraries and the use of those libraries can be written easily and
understood easily.

The goals alanguage should strive for, | believe, in order of importance, are as
follows:

1. Power and flexibility. The programmer should be ableto do alot easily and with
minimal code.
2. Simplicity / ease of programming. It should be straightforward and simple to write

code, and the language shouldn't include redundant features or ones that can be

3

implemented just aswell in library code. Of course, since power has a higher priority,
simple means as simple as power will alow.

3. Safety. The compiler should discover as many errors as possible; as many as possible
of the ones it misses should cause the program to crash at runtime. Very few
unintentional errors should cause the program to give incorrect results.

4. Speed and size of the final executable.

5. Speed of writing code. Thisisn't quite the same as ease of programming in point 2. A
language that |ets programmers write code quickly may have abrevity to its syntax,
but the final result may not be very maintainable or understandable. Ease of
programming also involves ease of maintaining code (when it has been well written).

It's interesting to note that RAD (Rapid Application Development) programming
languages have placed point 5 first. This may be OK for writing a small, throw-away
program. But in the long term, programs written in these languages are more difficult to
modify than programs written in languages where power and flexibility are the priority,
and more time (and therefore money) is wasted overall.

Standard C++ mostly follows the above philosophy; besides being very powerful,
it allows the programmer to write code the way he or she wants (i.e. it is
“multiparadigm”, as Bjarne Stroustrup, its creator, noted[SEBESTA 2003]). Many
languages, on the other hand, have tried to force programmersto use a certain
programming style, seemingly in an effort to force programmers to write good code. |
am of the belief, rather, that no language can prevent programmers from writing bad code
if that iswhat they're determined to do. Rather, languages should allow programmers to

write good code in every case. No language | know of doesthisaswell asit could.

C++ has often focused on efficiency over safety. For example, it doesn't check
for array-out-of-bounds errors at runtime. A good argument can be made as to why speed
IS more important than safety: although it takes longer to write and debug a program
written in alanguage with these priorities, once it is finally working, the result is a faster,
and therefore better, program. That approach is problematic for two reasons: first,
because it is very difficult to prove that a program works correctly; testing the program
thousands of times does not prove this. Second, few programs actually reach that “final
state” - instead, they constantly change and evolve. This meansthat at any given time
there is areasonable chance that they have a bug, which is often extremely important to
discover.

When | refer to safety, | mean not only catching errors at compile time, but also
having the program crash rather than continue when the code isincorrect. Having a
program give an incorrect result is much worse than having it crash, because the user
might not even recognize the incorrect result as an error. On the other hand, if it crashes,
then we know the program has a bug by definition, and the source of the bug can usually
be found more easily as well.

Even despite the above, it is often a difficult tradeoff that must be made between
safety and speed. In some cases it is better to focus on speed, in othersit is better to
focus on safety. If | wereto force people to choose safety in CFlat, they would ssmply
revert to using C for some applications (and rightly so). Therefore, in keeping with the
general engineering principle that unless something should always be done a certain way,
the user should have achoice, it ismy policy to let the user choose. Many runtime

checks — such as array indexing out of bounds, overflow errors, and asserts — are required

in the executable program's by default (and cause an exception to be thrown upon
failure). However, a compiler switch to turn these checks off is also required. | believe
this switch should in general only be used if the programmer is very sure that there are no
bugs in the program, and if the program is not safety-critical, and if there are relatively
significant gains to having the program run faster than it would otherwise.

It is also important to note that often safety, meaning the infrequent appearance of
unintentional bugs, often goes together with a simple and powerful interface. Thisis
because a small amount of code tends to have far fewer bugs than a large amount of code.
For example, Java, although it claims to focus on safety, has arelatively complex and
confusing way of supporting input and output, which leads to programs with more bugs.

Also, if alanguage has subtle inconsistencies in syntax and semantics, as C and
C++ often do, then the language is unsafe because programmers will accidentally write
one thing when they mean another. The“=" operator is an example (see section 4.6.5).
An examplein Javaisthe fact that all objects are references and variables of primitive
type aren't.

Bjarne Stroustrup wrote of the design of C++, “Simplicity was an important
design criterion: where there was a choice between simplifying the language definition
and ssmplifying the compiler, the former was chosen” [STROUSTRUP, 1997]. |
completely agree with him on this statement and have made simplicity from a
programmer’s point of view, without the sacrifice of power, ahigh priority for CFlat. |
strongly believe that a powerful and useful computer tool need not be complex.

Despite Stroustrup's statement above, C++ is considerably more complex than

most people are comfortable with. Much of this complexity originates from its

6

requirement of backwards compatibility with C. Since CFlat doesn't have this restriction,
it should be better able to meet this goal of simplicity.

Finally, I would like to write afew words about repetitive code. A fundamental
rule for maintainable code is that a piece of code should only exist in one place. If it
exists in more than one place, someone might update it in some places and forget to
update it in others. Thus, if thereis afunction used by more than one program, in C and
C++ you can put the function in a separate file and have each program that usesit include
the function with a#include statement. Put another way, the programmer should tell the
computer only what it needs to know to make the desired program, and not more than
once.

| suggest that this principle can and should be extended to even the basic features
of alanguage. For instance, suppose we have a program that is testing whether a
variablesvalueisoneof 1, 5, or 6. If they are forced to write, because of language
restrictions:
if (var == 1 || var == 5 || var == 6) ...
then the code is not as good as it could be, smply because the variable's name, “var”,
existsin 3 placesinstead of 1. If the programmer wants to change the name of the
variable, there are now more places that he or she might forget to change. This example
might seem insignificant to most people, but it is not insignificant when considered along
with many other such restrictionsin languages. The result isthat it becomes difficult to
write good code. The benefits of removing the need to write any repetitive code are at
least fewer bugs and ssmpler code. Asaresult, one of the design goals of CHlat is that

the programmer will never need to write the same information twice.

2.2. Influence Of Other Languages

CHat has been most heavily influenced by C++, being an extension of that
language. | chose C++ as a base because, of the languages | have encountered, it comes
closest to my design philosophy outlined in the previous section. Once good library code
iswritten in C++, code can be written that does alot in avery small space and
understandably, because of features like operator overloading, object-oriented techniques
and implicit casting.

Also, C++ has afeature that is very important for any statically typed language:
templates. Without some kind of generic programming facility such as templates,
statically typed languages lack a great deal of flexibility that a corresponding dynamically
typed language would have [VOEGELE, 2003]. Since | want CFlat to be a compiled
rather than an interpreted language, it is critical that it supports templates or asimilar
feature. Few languages besides C++ currently provide this kind of feature.

CFlat isalso influenced by IDL (Interactive Data Language), made by Research
Systems, Inc. | liked its matrix operations, which allow operations on whole arrays at
once without the need of aloop, and | would like to see that technique in a C-like
language. These types of features are aso present in Matlab and other matrix-oriented
languages.

| also received much inspiration and some ideas from the D Programming
Language [Bright, 2002]. Although | started designing CFlat before discovering D, |
discovered that some of theideas for it are close to or the same as mine, especially its

focus on simplicity.

APL, alanguage not widely used anymore, has had a dight influence on CFlat.
Its powerful matrix constructs are similar to the array features of CFlat, and in particular
its handling of inner and outer products has been the source of my ideas for array
operations described in section 4.3.6. Needlessto say, its character set has not been
incorporated into CFlat.

| owe to Pascal its assignment operator, “:=", which has replaced the traditional
“=" operator for assignment. Pascal also used a“..” operator for subrange types, and this
operator has many usesin CFlat.

Python, as well as other languages, have alanguage construct called generator
functions. These have been incorporated into CFlat almost exactly asin Python, and are
used for providing a“for each” loop as described in section 4.4.4, besides their
independent usefulness.

Finally, it isworth making note of Microsoft's C#, without which CFlat would

have adifferent name, if little else.

3. Summary Of Major Features

Table 1 shows the major features of CFlat, whether the feature has been

implemented, and the equivalent C++ feature, if applicable. The “Done?’ column refers

to whether the feature has been implemented in the CFlat 0.1 compiler. Ten of these 22

features have been implemented. Section 5 contains more details on the CFlat 0.1

compiler.
Table 1. Summary of CFlat language features and comparison to C++
Feature Done? Sample CFlat code Equivalent C++ code
Lang Include No #i ncl ude <l ang> N A
File
Function No function sqr(double x) double sqgr(double x);
Headers returns doubl e;
Nested No function f() { N A
Functions function g() { ... }
Functions as No function f(function N A
Objects 9);
In-place No function trim); void triminplace();
function trim) String trim);
IC:)ver![_oaded returns String;
unctions
Operator No tenpl ate <class T> Not allowed for primtive
. operator*(T Al], T B types; nust create a
Overloading [(n; regul ar function
User-defined No operator div(int X, Not al |l owed; nust create a
operators int y) returns int; regul ar function
Array literals Yes f({1, 2, 3}); }?t)X[] = {1, 2, 3};
X)
Array Yes Ali, Aui, Asize Store size in separate
properties vari abl e
Array range Yes Al1..10] := 1, Use | oops. Eg.:
Zt 9 A[1..10] := B[5..14]; for (int i =1; i <= 10;
operator A= {1..10}; i +4)
Alil =1
N-based arrays Yes int Al1l..10]; N A (Forced to use a O-
based array or decl are one
| arger than you need)
In operator No if (xin {1, 6, 8}) it (x ==%H
X ==

X == 8)

10

Feature Done? Sample CFlat code Equivalent C++ code
Stack-dynamic No int Alsize]; int A= newint[size];
delete [] A
arrays
Array No B:=A* 2 for (int i =0; i < sizeof
. A; 1 ++
operations ()B[i] :)A[i] * 2
Salect Yes select (x) { switch (x) {
case 1: . case 1: br eak;
i:ase 2: i:ase 2: br eak;
Any Yes sel ect (ans) { iIf (anfs == “Yes") ...
S case “Yes": .. el se i ans == “No”
Expressionin (for case “No": else ... ()
Select and select) case el se:
Switch
Ranged cases Yes case 1..3: case 1: case 2: case 3:
Multiple No if (x <y <2) if (x <y &y <z
Relational
Operators
For loops Yes for (int i :=1..10) for (int i =1; i <= 10;
i +4)
Foreachloops No for (int i :=each(A)) NA
for (int = prines
()
<< “Hello World”; std::cout << “Hello
I/O operators Yes Vori dr.
Input Yes >>int X; int x;

Declarations

std::cin >> x;

11

4. Features In Detail

4.1. Lang Include File

Many features that should ideally be viewed as part of the language by a user are
most efficiently implemented as CH at library code. These features, though each one may
be inits own include file, must be packaged together into an include file called “lang”,
similar to javas java.lang package. These featuresinclude strings, array operations, and
standard 1/0, besides potentially many others.

The difference between CFlat's lang header and the java.lang package is that lang
is not automatically included in every program. The reason for thisisthat sometimes
programmers may dislike the built-in facilities and may want to write their own. If it
were automatically included, they would be forced to carry around the extra baggage of
those features that they don't use.

Theresult of thisisthat it is highly recommended, but not required, that every

CHat program begin with the line:

#i ncl ude <l ang>
Some programmers write personal librariesfor usein every program they write;
they would be able to simply put the above include statement in their library and they
would not need any more include statementsin their programs than they aready need.
If the user doesn't include the lang header but uses a symbol defined in it, a good
compiler will notice this fact and inform them that they probably want to add the include

statement.

12

4.2. Functions
4.2.1. Function Headers

In CFlat, function headers have the following form:

function nanme (paranmeters) returns returnType

So, for example, to declare a“sqr” function to square a number, one would write:

function sqr (double x) returns doubl e;
The“returns’ clause can be omitted, in which case it defaults to “void”.
Thereasonsfor this change are threefold. First, | believe it makes the code more
readable. In C++, when thereisalong list of declarations, areader can spend some time
trying to figure out whether something is afunction declaration or an object declaration.

For example, consider the following statements.

Poi nt x(Poi nt o, Point p);
Point x((Point) o, (Point) p);

Thefirst statement declares a function returning a Point and taking two Points as
parameters. The second creates an object x of type Point, passing o and p, casted to
Points, as parameters. These are two very different things, but it is not immediately
obvious which iswhich by looking at the code.

The other two reasons for this change are that it fits better with functions as
objects and nested functions, which are discussed in the following two sections.

Finaly, this new syntax works better with operators and especially with the
syntax for generators, as described in sections 4.2.5 and 4.4.4 respectfully.

4.2.2. Nested Functions
In CFlat, functions can be defined within any code block. The scope of such

functionsisthat code block rather than the entire program unit.

13

This feature would be difficult to implement under the C and C++ function
syntax. Just as readers can struggle trying to determine whether a piece of codeisa
function or avariable, as described above, it is also difficult for the compiler. If C-style
functions were allowed within the context of other functions, this would become even
more difficult for the compiler and for compiler writers. The new function syntax makes
it atrivial matter for the compiler to recognize afunction declaration, whether itisin
another function or not.
4.2.3. Functions As Objects

Functions, in CFlat, can be thought of as objects. Variables of type "function”
can be created and given existing functions as values, then called using the regular
function call syntax. The new placement of the keyword "function", as described above,
makesiit look very much like "function” is atype specifier for a variable declaration.
Thereisaparalel between “int x” and “function f” and indeed, that is not far from the
way they would be treated by the compiler. This provides agreat deal of power while
retaining a simple and understandabl e syntax.

A sample code snippet demonstrating is shown in Fig. 1.

function sqr(double x) returns double {
return x * x;

}

function f (double) returns double := sqr
double x := f(2);
Fig. 1. Functions as objects

A variable of type function simply holds a reference to a particular function.
Since functions can't be modified once created, there is no need to have adistinction

between functions and pointers to functions. Asaresult, function variables can act just

14

like pointers, except without the extra pointer syntax (though pointers to functions do use
pointer syntax in C and C++ [KERNIGHAN 1988]).
4.2.4. In-place Overloaded Functions

Motivation: Consider astring class. Suppose one of the member functions of the
classisafunction to trim astring - that is, to remove whitespace from the start and end of
“this’ string. The designer of the classis here faced with a dilemma: should the function
actually trim “this’ string, or should it return atrimmed copy of it, alowing the user to

decide what to do with it? That is, will it be used like this:

s.trim(); //remove spaces fromstart and end of s
or this?.
cout << s.trim(); /[/print a trimed version of s, but don't change s

The writer of alibrary can't easily decide which function would be more
convenient for the user. Indeed, in some cases one version would be preferred whilein
other cases, even in the same program, the other is more convenient. What this often
resultsin is alternate versions of functions, such astrim and trim_inplace, the latter being
the version that actually modifiesthe string. The end result is either extrafunctions for a
user to know about, or the user lacking knowledge of the alternate version and hence
using only one version, even when doing so is inefficient.

Solution: CFlat avoids these problems by introducing what are called in-place
overloaded functions. These are simply two functions with the same name, and the same
parameter list, but only one of which returnsavalue. The other has avoid return type.
Theideais that the function returning void does a computation on an object in-place,

while the other function copies the applicable object and returns a modified copy. Using

15

the example described above, this concept is shown by implementing the trim function in

Fig. 2.

class String {
function trin();
function trin() returns String {
String toTrim:= *this; [//copy this String
toTrimtrim(); //trimthe copy
return toTrim //return the trimred copy

Fig. 2. Demonstration of writing in-place overloaded functions

The compiler decides which function is being called based on the context. For
example, if the call appears on aline by itself, asin:
s.trim);
it callsthefirst (the in-place) function. If it isused asan expression, asin:

String s2 := s.trim));
then the second function, the one returning a String, is called.

A possible future development of this concept is to allow overloading of functions
that only differ in their return type. For example, someone could write one function that
returns an int, and another function with the same name and parameters but which returns
astring. The compiler would decide which function is being called based on the
expected type of the expression it appearsin. Thisissimilar to typeinference, which
appearsin functional languages such as ML [SEBESTA, 2003]. However, because this
development may introduce complications in alanguage with implicit casting, which

CHat has, it isuncertain at this time whether it is worthwhile.

16

4.2.5. Operator Overloading

The operator overloading feature of C++ is one which provides alot of power and
which allows code to be very understandable. It allows types to be created which appear
to the user amost like a built-in type. CFlat therefore retains and extends this feature.

The operator headers ook dightly different to make them more in harmony with
the new function header syntax (section 4.2.1). An example CFlat operator declaration
IS
operator *(int A[], int B[]) returns int[]; //define matrix product

CFlat also allows operators to be defined between primitive types. Thisis not
possible in C++; there, operators that are not within a class have to have at |east one user-
defined type as a parameter [STROUSTRUP, 1997]. Allowing primitive typesis partly
for purposes of implementing some primitive operators as CFlat code rather than building
them into the compiler, and partly to provide extra power to the user and more
orthogonality to the language. The above multiplication operator for matrix productsis
an example of an operator between primitive types.

In addition, in the interest of preventing the user from having to write too many
operators, many of the operators are defined in terms of othersin the lang include file
discussed in section 4.1. Specifically, the *, +, etc. operators are defined in terms of *=,
+=, etc. (* isdefined in terms of *= rather than *=in terms of * for efficiency reasons;
the assignment operators do calculations in place, and are therefore the more primitive
operations). Also, most relational operators (>, >=, <=, == and ! =) are defined in terms
of <. Then, for example, if the user defines a*= operator, * can be used as well without

the programmer having to defineit.

17

Note that, since (x ==y) equatesto !((y <X) || (x <)) interms of <, its efficiency
could be doubled if the user defines it manually. Therefore it is recommended to define
both < and == when speed may be important. Any of these automatically defined
operators can be defined manually; since the operators are templates, the user'sversion is
always used instead.

An example implementation is shown in Fig. 3.

tenplate <class T, class U>
operator >(T x, Uy) returns bool {
returny < x;

Fig. 3. > operator defined in terms of <

C++ provides something similar to this for the relational operators. Thereisa
classcaled “rel_ops’ in the standard library, which provides all the other relational
operators once < and == are defined. Unfortunately, this class requires that the user
#include <utility>, that the statement “use std::rel_ops’ appears before calling the
operators, and it doesn't provide any other operators besides those four relational
operators. CFlat overcomes all these limitations.
4.2.6. User-Defined Operators

In CFlat users can define new unary or binary operators using the same naming
rules used for identifier names. The number of parameters determines whether the
operator isbinary or unary. This feature alows certain functions to be called with amore
understandable syntax. For example, a“mod” operator could be defined to mean the

same as the “%" operator. The definition might look like:

operator nod(int x, int y) returns int { return x %vy; }

18

Bjarne Stroustrup wrote that allowing this can lead to ambiguities—isthe
operator |left-associative or right-associative? [STROUSTRUP, 1997]. Thisambiguity is
resolved in CFlat by forcing all user-defined operators to be nonassociative —that is, it is

invalid to chain calls to them together, asin:

X mod y nod z; [lError — nod is nonassoci ative
Instead, the user must explicitly specify the order of evaluation using brackets:
(x nmod y) nod z; /1 OK
4.3. Arrays
4.3.1. Array Additions

First, allow me to note afew changes in the workings of regular arraysin CFlat
compared to C and C++. They will become important as they are connected to some of
the other features involving arrays described later on.

Array literalsin CFlat are based on array initializersin C. They are alowed most
places an array is alowed, not just in aninitialization. So if we have afunction “sort”

declared as:

function sort(int[] a);
then it can be called like so:
sort ({1, 5, 3});

Java partly introduced this feature—in Java, it is necessary to prefix the array
literal with “int[]” if it isn't an array initialization. Others have said thereis*no good
reason” not to allow array initializersin other contexts [LINDEN 113]. So for the sake of

unified syntax, array literals are a set of expressions (which must have the same type)

19

enclosed in {} and separated by commas. Aswe will see, they are also important for
integration with some of the other features described below.

CFlat arrays are not the same as pointers, asthey arein C and C++. In CFlat, an
array isakind of pointer —that is, it can be used wherever a pointer is allowed, but it also
has other properties. A normal pointer cannot be used where an array isrequired. Since
arrays are a separate type, it would be natural for other container types, such asthose in
the standard library (set, map, vector, etc.) to have an implicit cast defined from that type
to the primitive array type. That way, those classes could be used in all the constructs
listed below where an array is allowed.

An array hasasizethat it carrieswith it. This can be queried like so:

int a[] :={1, 2, 3};
cout << a.size; /lprints 3

It also has alower index that can be queried (See section 3.13):
assert(a.li == 0);
and an upper index:
assert(a.ui == 2);

Note that these properties do not cause aloss of efficiency for a compiler with
good optimization. If one of the propertiesis used in the same function that a static array
is declared, the compiler can replace its use with a constant, and no extramemory is
needed. If an array isthe parameter to afunction, the compiler may need to pass the
properties asimplicit parameters, but only if the function actually uses them (or callsa
function which does). In those cases, the function would need that extra parameter

anyway if these array properties were not available. If the properties are never used, then

20

memory doesn't need to be allocated for it. Also, at most 2 of the 3 properties need to be
stored in memory; the third can be calculated using “size==ui - li + 1".
4.3.2. Array Range Operator

CFlat introduces a new operator, “..”. Its main use isto specify arange of values.

For example,

1..10
means the integers 1 through 10 inclusive. Specifically, it can be thought of as an array
containing the values 1 through 10 (it is not always treated this way by the compiler, for
efficiency reasons). One use of this operator isto initialize an integer array to arange of
values. For example:
int a[] := {1..10};
initializes“a’ with the integers 1 through 10. The same technique can be used in an
assignment statement to set an existing array to those values; an exception isthrown if
the sizes of the two arrays do no match.

Arrays can be subscripted with arange to extract adlice of that array. Some

examples follow.

double A[100], B[30] :=4.6; /[//AIl elements of B are 4.6
A[4..20] := 3.2 /lelements 4 through 20 get the value 3.2
A[70..] := B /1B gets copied to elements 70 and up of A
A[70..] :=8B[..]; /] Same, but maybe nore readabl e

Arrays can aso be subscripted with other arrays. This allows many array

elements to be assigned values without using aloop. For example:

int a[] := {1..10};
a[{1, 3, 5}] := a[6..8];

Is semantically equivalent to:

21

al 1]
a[3]
a[5]

Since all operators can be overloaded in CFlat (see section 4.2.5), this previous
feature can be implemented by defining an operator, rather than as part of the compiler.
Therefore, rather than being a feature of the language, it would go in the standard library.
It could be implemented by writing afunction something like the one shown in Fig. 4 (it
should actually be atemplate function so that it works for any array type, but this
example is merely for demonstration).

operator [](int[] a, int[] indices) returns int[] {
int retVal[indices.size];
for (int i :=0; i < indices.size; i++) {
retVal[i] := a[[indices[i + indices.li]]];

}

return retVal;

Fig. 4. Implementing arrays as subscripts with an overloaded operator

Finally, in an assignment, an array can be used as the left hand side of the
assignment while avalueis on theright hand side. For example:
int a[10] := 5;

This creates an array of size 10 with every element initialized to 5.

These features will probably look familiar to programmers of Matlab or similar
matrix-oriented languages. In fact, asimilar set of operations, implemented through
valarrays, isavailable in the C++ standard library [JOSUTTIS 547]. All elementsina
valarray can be assigned a single value at once, and the “slice” class can be used with

valarrays to extract a subset of avalarray. For example:

val array<i nt> v(100); /lcreate a valarray of size 100

22

vV = 2; //set all elements to 2
v[islice(0, 50, 1)] = 3; //assign elenments 0 through 49 the value 3

In my opinion, valarrays have some design flaws; but even if an improved
valarray class could be written, | believe it is better to have this functionality built
directly into the language for regular arrays. The main reason is that shortcuts such as the
ability toinitialize al elements of an array at once are useful conceivably anywhere an
array isused, not only in numerical computations. In addition, there is an advantage to
having a common syntax among all the container types; it would cause programmers no
end of grief if they could use shortcuts for a container in the standard library but not for
ordinary arrays.

4.3.3. N-based Arrays
Whereas in C++ arrays have an implicit base of O, arraysin CFlat can be declared

with other bases. Thisisaso done using the “..” operator and looks like this:

int x[1..10];

This above statement declares an array that can be indexed with the integers 1 through 10
inclusive. The lower index can be any integer less than or equal to the upper index. It
can even be a negative integer.

The reason for this addition is that it is often counterintuitive to work with base O
arrays. For example, imagine an array for the twelve months of the year. Most people
associate February with the number 2, so would be inclined to use the index 2 when they
mean February. If, because of the inflexibility of the language, they are forced to use 1

when they mean February, the possibility of countless off-by-one errorsis opened up.

23

4.3.4. In Operator

The*®in” operator is anew operator to conveniently check whether avaueis one
of aset of values. For example:
if (xin {1, 3, 4}) ...

Theright hand side must be an array of some type X, and the left hand side must
have type X (or must have acast to X defined). Theresult isaboolean value that
determines whether the left hand side is an element of the array on the right hand side.

Currently, this functionality would normally be written with a more complex if
Statement:
if (x ==11]] x ==3]| x ==4) ...

This second statement has the disadvantage that "x" must be written three times instead
of one (see section 2.1, "Design Philosophy").

The“in” operator can, and is required to be, implemented in the lang includefile
as atemplate user-defined operator (user-defined operators are discussed in section
4.2.6). Sinceit can't be assumed that the array is sorted, it would simply do a sequential
search through the array looking for the element. For this reason, the “in” operator is not
very suitable for working with large arrays that are kept sorted, but is provided mainly for
the convenience described above.

An aternative to this feature, which can be used in C++, would be for
programmers to use a container class with amember function to do this check. This

would look something like the following:

if (Array({1, 3, 4}).contains(x)) ...

24

Thisisn't quite as convenient, however. Itisn't quite as readable or writable as an
"In" operator. It also requires the programmer to include a separate class unlessthere is
an “Array” class aready built into the language.
4.3.5. Stack-dynamic Arrays As A Built-in Type

Motivation: In C++, static arrays (ones whose size is known to the compiler) are
simple and straightforward. Dynamic arrays, on the other hand (ones whose sizeis
determined at the time they are initialized) are not as straightforward.

First, the syntax for dynamic arraysis different than for static arrays, though
conceptually the two are not much different. Thismay cause beginning programmersto

write something like:

int size;
cin >> size;
int Alsize];

and they might be confused as to why it won't compile.

Second, and probably worse, isthat dynamic arrays must be deleted with a delete
statement. For simple functions, thisis not abig deal; but for functions with multiple
return statements, or which throw exceptions, it can be tricky to ensure that the delete
statement is executed in all cases. This problem is outlined in more depth by Nicolai
Josuttis in the context of the auto_ptr class in section 4.2 of his book [JOSUTTIS, 1999].
This problem leads many programmers to use aless efficient container class than he or
she needs, such as the vector class in the standard library, to circumvent the problem.

CFlat improves this situation by having an array classthat is tied to the compiler.
Whenever an array declaration occurs, the compiler checks whether its size can be

computed at compile time (such asif itssizeis an integer constant). If it canbe, itis

25

treated as a static array, which needs no deallocation. If not, which may be the caseiif its
sizeisavariable, then the compiler treats the declaration of the array as a declaration of a
variable of type array. So the statement:
int Alsize];
would be treated as:
array<int> A(size);

Classarr ay isatemplate class defined in the lang header described in section
4.1. It does nothing but create an array with a“new” statement in the constructor, delete
it in the destructor, and allow the array to be used with the regular operations for static
arrays. The user can also create their own class named ar r ay and use it instead, provided
it has constructors with the same interface and provided they don't #include the lang
header (which would cause a duplicate definition of ar r ay).
4.3.6. Array Operations

Although the range operator operations described in section 4.3.2 are powerful, it

would nonetheless be better still if programmers could write something like:

int Al] :
int B[] :

{1, 2, 5 7};
A* 2; /llntention is B[] := {2, 4, 10, 14};

This could be done with overloaded operators (see section 4.2.5), but it can bog
down aprogrammer if he or she has to write an overloaded for each array operation he or
shewould like to use in an aggregate fashion. The process of writing these operators can
itself be tedious and repetitive.

APL, alanguage no longer in wide use, had partial support for the kind of feature
shown in the sample code above. It used an operator for the outer product, which, when

combined with another operator, applied that operator on each combination of elements

26
of the arraysinvolved. Unfortunately, this operator could only be used with the built-in
operators, and not with a user defined function. [POLIVKA, 1975].

The solution in CFlat isto treat callsto functions in which arrays are passed
specially. (Note that operators are nothing but functions with different syntax, so this
appliesto operators as well; see section 4.2.5). When afunction is called, the compiler
first checks for the existence of one whose parameter list matches the argument list
exactly. If amatchisn't found, the compiler then checks whether any of the argument is
an array. If the compiler can replace a parameter of type “Array of T” with a parameter
of type“T” and get a matching function, then this feature isused. It then calls that
function in aloop, iterating over the elements of the array.

For example, consider the above call to the “*” operator. Suppose thereisno
operator defined with the header:
operator *(int[] A int x) returns int[];

(If there was, it would simply be called and this feature would not be used). But thereis
a“*” operator defined which takes 2 ints and returns an int — it's built into the language.

Therefore, the compiler treats the statement “A * 2" asthe result of afunction as defined

inFig. 5.
int retval[] := A
for (int i := Ali..Aui)
retvVal[i] := Ali] * 2; [/Call the “*” operator to get each result

return retVal
Fig. 5. Function generated by the compiler for the array operation “A * 2"

A possible future development of thisideaisto extend it for use with any
container class, rather than just arrays. The question that must then be asked is, what isa

container? Perhaps a container could be defined as any type with an implicit cast to an

27

array. Inthat case, thisfeature would be fine the way it is. But it might be more efficient
and/or powerful to define a container as a class that provides methods, called “next”,
“firgt” and “last”, say, to iterate through its elements. More investigation on this matter is
needed, possibly including an implementation of each idea, before a decision on this can

be properly made.

4.4. Program Control Constructs
4.4.1. Switch And Select Statements

The switch statement in C (which remained the same in C++) haslong been a
source of problems. The fact that only an integer expression may be used as the switch
expression shows alack of orthogonality. That is, the code shown in Fig. 6 makes
perfect sense to a programmer reading it, but isnot valid in C or its derivatives.

switch (answer) {
case “yes”:
case “no”:
default: ... //error

Fig. 6. Invalid in C or C++ to use astring in aswitch

Perhaps even worse is that once a matching case is found, execution continues
through all remaining case statements in the switch, whether they match or not. Thisis
convenient in afew cases, but in most cases it means the programmer hasto add a
“break” statement at the end of each case, which can be anuisance. It also leadsto bugs
when the programmer forgets the break statement where one was intended, and is
especially frustrating to beginning programmers. Probably the most frequent use of this
“fall-through” behavior is to overcome another inflexibility in switch statements: that

only one valueis alowed in the case expression.

28

C# tried to avoid the bugs introduced by the fall-through behavior by adding the
following requirement to switch statements: “Every nonempty case segment must end
with an unconditional branch statement” [SEBESTA, 2003]. Whereasthisisarguably a
welcome change that improves the switch statement slightly, in CFlat | take more drastic
measures to try to overcome al of the aforementioned limitations. Thisis done by
making the following additions compared to C++:

1. A “select” statement. It isexactly the same as the “switch” statement, except
only the first case that matches the select expression is executed. So a select block is
equivalent to the corresponding switch block with “break;” inserted at the end of each
case.

2. In both switch and select statements, any expression isvalid as the switch
expression, with the case statements containing expressions of the same type. So the

switch statement shown above at the beginning of this section is equivalent to:

if (answer == “yes”) { ... }
else if (answer == “no”) { ... }
else { ... /lerror }

Note that in the switch version, “answer” only needs to be written once, whereas
in the if-else block, “answer” must be written for all but one of the alternatives (see
section 2.1, “Design Philosophy™).

To use switch and select, an == operator has to be defined for the type of the
switch expression. It aso has the unfortunate consequence that programmers might
forget that to compare some types (such as C style strings), you can't use ==. However,

the same sorts of problems would arise if they had to use an if-else block instead of a

29

switch or select statement (and they have to in C++ since there switch and select can only

be used with integers). So | believe the trade-off is worthwhile.

3. A range of values may be specified in a case statement. Thisisdone using the

“..” operator introduced in 3.3, asshownin Fig. 7.

sel ect (num grade) {

case 0..49: grade := “F";
case 50..59: grade := “D’;
case 60..69: grade := “C’;
case 70..79: grade := “B";
case 80..89: grade := “A";
case 90..100: grade := “A+";

Fig. 7. The .. operator in case statements

Note that where thisfeature is used, the type of the switch expression must be an

ordinal type; that is, there must be an order to the values of that type. Specifically, the

order must be defined by overloading the “<” operator, which is called to determine

whether the switch expression isin the range specified in the case statement.

4.4.2. Multiple Relational Operators

In CFlat, the relational operators (==, |=, <, >, <=, and >=) can be strung together

inasingle expression. Thisisbest illustrated with an example:

if (x <y <2z) ...

The above statement is equivalent to:

if (x <y && vy < 2)

In general, any n boolean expressions may be combined with any n-1 relational

operators separating them.

30

The advantages to this feature are twofold. First, it eliminates repetition (see
section 2.1, “Design Philosophy”) because, in the above example, the expression “y” only
needs to be written once, not twice. Keep in mind that in place of “y” there might be a
complex expression, involving function cals, casts, etc..

Second, this notation is already valid mathematical notation that people are used
to. Programmers, especially beginning programmers, are liable to write, or want to write,
such an expression, because it makes sense to them. Asitisnow, if they did write an
expression like“x <y < z” in C or C++, the code would compile without errors - “x <y”
is aboolean expression evaluating to 0 or 1, and this result would be compared to check
whether it isless than z. Thisbehavior is almost never what isintended. In CHat, these
multiple relational operatorsin arow are parsed before the individual binary operators, so
there is no ambiguity. Also, by default, ints are not implicitly converted to booleans (see
section 4.6.8).

A potential concern for thisfeature isthat it is too difficult to implement. |
believe that the benefits, in the long run, outweigh this difficulty. It ispossibleto
implement. The compiler, when it sees arelational operator followed by a boolean
expression, checks whether another relational operator and boolean expression pair
follows. If so, it adds, between the first boolean expression and second relational
operator, the “&&” operator followed by another copy of the first boolean expression.

The EBNF grammar would look like this:

full-rel-expr => bool -expr [part-rel-expr rel-op bool-expr]
part-rel-expr => rel-op bool - expr /* bool -expr is changed to
bool - expr && bool - expr */

31

where “bool-expr” is aboolean expression and “rel-op” is one of the six relational
operators mentioned above.
4.4.3. For Loops

“For” loops in C and most languages derived from it have long been problematic.

Consider atypical loop to iterate through the integers 1 to 10:
for (int i =1; i <=10; i++) //|oop body
This same loop could be instead written as awhile loop, asin Fig. 8.
int i =1;
while (i <= 10) {

/11 oop body

i ++;
Fig. 8. A while loop being used in place of afor loop

Asthe reader can see, using a C-style for loop barely adds anything in the way of
readability or smplicity compared to using awhile loop. The only major differenceis
that the programmer types "for" instead of "while". Though it has been said that the for
loop is"flexible" [GNU C Programming Tutorial, 2003], there is a fine line between
flexibility and forcing usersto handle low level details themselves. The purpose of a
“for” loop isto alow theiteration through a set of values, setting a variable to each value
in the set in turn; as such, the construct should make this task significantly easier to
accomplish than if it weren't present. The C for loop does not.

Taking the above into consideration, CFlat introduces a new version of the “for”
loop. Inits most straightforward use, it might look something like the following

(showing the example above):

for (int i :=1..10) /11 oop body

32

Besides being more readable, this syntax allows the user to have to write "i" only
once, rather than three times, which fits with the philosophy described in section 2.1.
A step value may also be specified, indicating the amount to increase the loop

variable by each time (if omitted, it defaultsto 1):

for (int i :=1..10 step 2) /11 oop body

Asof now, the step value must be a constant. Since negative step values are
allowed to step backwards through the set of values, the compiler needs to know whether
the value is positive or negative so it knows the direction of the increment. In the future,
this requirement may be relaxed.
4.4.4. For Each Loops

Preliminaries. As mentioned in section 2.2, CFlat introduces generator functions.

These are functions that are meant to iterate through a set of values, returning the next
value in the set each time they are called. Rather than returning normally as aregular
function does, generator functions save their state before returning and resume where
they left off next time they are called. An example generator to iterate through the
integers 1 to 10 is shown in Fig. 9.

function f() yields int {
for (int i :=1..10) yield i;

Fig. 9. Sample generator function to iterate through the integers 1 to 10
Thefirst timef iscaled, it returns 1, the second time it returns 2, and so on. As
the reader can see, the “yield” statement is used in place of “return” to cause the function

to saveits state for the next call. When it reaches the end of the function, it throws an

33

exception to indicate that it has reached the end of its set of values, then resetsto its
starting state for the next call.

A point worth noting is that although the set of integers above istreated as a set,
the whole set is never in memory at once. So using generators allows the programmer to
work with a collection of size n while only using O(1) memory (the memory required to
store the state of the generator), while traditional methods often take O(n) memory.

For loop: CFlat hasanew “for” loop which uses the generators described above.

The aternate syntax is as follows:

for (variable := generator) statenents
The loop iterates through each value returned by the generator, and stops when the
generator throws its “Finished” exception. “variable’ is assigned each of the values

returned by the generator at each pass through the loop.

For each loop: Included in the lang include file is a generator called “each”. This
function takes an array as a parameter and yields each element of the array in turn. So

the “each” generator can be used to construct a“for each” loop, asin:

for (int x := each(A)) x :=1; //Assign 1 to all elements of A
4.5. Input And Output
4.5.1. Unary 1/O Operators
CFlat introduces a convenience for doing 1/0 that makes it easier to do I/O from
standard in and standard out. If the input/output stream isleft out, it defaultsto cin or

cout respectively. For example, the statement:

<< “Hello World”;

IS equivalent to:

34
cout << “Hello Wrld”;

In addition, using this new form of input/output can be done without the usual
“#include <iostream>" statement, because nothing from that header is being used
explicitly. Thisneed not cause aloss of efficiency for code that doesn't do I/O, as | have
demonstrated in my compiler. The parser can simply make a note of whether the unary
<< or >> operators are used, and if so, the code generator assumes an implied “#include
<iostream>" at the beginning of the program.

4.5.2. Declarations In Input Statements

Declarations of variables may now appear in input statements. For example:

>> int X;
In C++, if you have avariable which isbeing initialized by an input, you have to
declareit first, then use the >> operator, causing the variable's name to be written twice

instead of once.

4.6. Other Minor Changes
4.6.1. Array Declarations — Square Bracket Placement

The array bracketsin an array declaration can be placed either after the type or
after the variable name. This allowsfor Java-style array declarations, which some people
are used to and/or prefer. So the following is allowed:
int[10] x; /] Same as int x[10];
4.6.2. Nested Comments

Block comments (/* */ comments) can be nested in CFlat. Thisway, any block of

code can be commented out by enclosing it in /* and */. In C++, thisis not possible if the

35

block of code already contains one of these comments, because the first */ ends the
outermost comment, causing alot of frustration.
4.6.3. Division

In C and C++, the“/” operator for division does integer division if and only if
both operands are integers, and floating-point division otherwise. This can be confusing
and can lead to bugs. In particular, people expect “1/ 2" to result in 0.5, and may be
surprised that it's actually 0. The source of the confusion, | believe, isthat the same
operator isbeing used for what are really two different operations, integer division and
floating-point division.

In CFlat, | have decided that “/” always performs floating-point division, while
“\" (backslash) doesinteger division. One drawback to this approach is that these
operators are similar and are sometimes confused — the different path separators between
Windows and Unix have shown this. Even so, | believe the benefits outweigh this
drawback, and that this new system is a slight improvement.

Note that even if programmers continue to use/, there won't be much of a
difference in the way CFlat works compared to C and C++. Consider the following:
int x :=1/ 2;

Even under the new CFlat division rules, thiswill either be a compile error, or x
will get the value 0, as before. If thereisa cast defined from floating-point to int (which
the user can define themself as the floor of the floating-point value), then the expression
“1/ 2" will result in the floating-point value “0.5”, which isimplicitly cast to the integer

“0” by calling this function, since an integer is expected. If thereisno cast defined, it'sa

36
compile error, which at least doesn't result in unexpected behavior, as can happen when
dividing integersin C and C++.

4.6.4. Floating-point Constants

To make the compiler simpler to write, floating-point constants aren't quite as
flexible asin C/C++. In those languages, you could end a constant with a decimal but
leave off the fraction; in CFlat, you can't. Sowhile“1.” and “1.E5” are valid floating-
point constantsin C and C++, they aren't in CFlat.

To continue to allow this would especially introduce difficulties due to the new
“..” operator. The expression “2..5” could be, at the lexical analysis stage, either an
integer followed by “..” followed by an integer, or afloating-point constant (“2.”)
followed by another floating-point constant (“.5”). If thefirst is not alowed, thereis no
ambiguity and lexical analysisissimpler.

Furthermore, the only use of the extra decimal point at the end is to specify that
the constant is floating-point rather than an integer. Thisisrarely if ever needed in CFlat,
because the constant is implicitly cast to floating-point (at compile time) if necessary. It
isn't needed anymore for division due to the change described in the previous section.

For the few cases where the programmer wants to ensure that their number is a floating-
point constant, using “2.0” instead of “2.” isn't abig deal, and it even makes more sense
from a mathematical point of view.

4.6.5. Assignment Operator

In most programming languages, there is confusion as to the meaning of “=". It
can mean either assignment (giving avariable avalue), or the relational operator to check

whether 2 values are equal. This can lead to bugs such as the following:

37

if (x =y) ... [l progranmer really neant “if (x ==vy) ...”
Tofix this, in CFlat “:=" isused for assignment and “==" continues to mean
comparison. “=" isnot used at al, as of now.

A possible future development is that “=" could be used for either operator, letting
its context decide its meaning. So if “x = 2" appears as a statement on its own, it would
mean assignment (:=), whereas if it appears within an “if” statement, such as“if (x = 2)”,
it would mean comparison (==). Thiswould allow programmers to continue to use “="
the way they are used to in most situations. However, this feature hasits problems—in
particular, “=" would now have a different meaning than in C++, and programmers might
useit asif it still hasthe old meaning, leading to incorrect behavior. For thisreasonitis
undecided whether this feature should eventually be incorporated into CFlat.
4.6.6. Operators For Pointers

In C and C++, accessing the member of a non-pointer is done with the*.”
operator, while accessing the member of a pointer is done with “->". In CFHlat, both are
accomplished with the“.” operator, so that if “p” isapointer, “p.m” means the same
thing that “p->m” did in C and C++. The “->" operator is gone, making for asimpler
syntax with fewer operators.

4.6.7. Public By Default

The default access specifier in CFlat ispublic. In C++itisprivate

[STROUSTRUP, 1997]. Thisincludes the access specifier for inheritance, so that “class

A : public B” can be more easily written “class A : B”, athough the former version does

no harm since the “public” keyword has no effect. Making public the default allows

38

quick-and-dirty code to be written quickly, without unexpected restrictions, while more
robust code must be well thought out, which is exactly asit should be.

Since a“struct” in C++ is nothing but a class with all members public, the
“struct” keyword can now be removed from CFlat as aresult of this change, resulting in a
simpler language.

4.6.8. Fewer Implicit Casts

In C++, there are implicit casts defined between most primitive types. Some
programmers might not want this to happen because it isn't safe and might lead to
unintentional bugs. Therefore, in CH at, thereis only aminimal set of implicit casts
defined in the language itself. Theseinclude casting from a smaller integer typeto a
larger one, from a smaller floating-point type to alarger one, and from an integer typeto
afloating-point type. They do not include casting from floating-point to integer, or from

integer to boolean. The latter means that tricks like the following are invalid:

int x;
if (x) [1ln CC++, nmeans “if (x !'=0)". Invalid in CFlat.

Such shortcuts are unreadable to many people since they don't make logical sense.

Note that in connection with the above, “if” and “while” statements now take a
“bool” as a parameter, whereas they took an integer in C and C++; likewise, the relational
operators (>, ==, etc.) return booleans, not integers.

The good news for programmers who like to use some of these implicit castsis
that they can define them themselves as library functions. For example, defining a cast

from int to bool isassimple as.

operator bool (int i) { return (i == 0)? false : true; }

Recall from section 4.2.5 that operator overloading is allowed between primitive types.

39

Note that explicit casting between fundamental typesisstill fine. So the
followingisvalid:
int i :=int(5.7); /11 gets the value 5. “int i :=5.7" is invalid.
4.6.9. Case Else To Replace Default

In switch and select statements, the use of the keyword “default” is replaced by
the phrase “ case else”. The keyword “default” is not a keyword any longer, freeing it to
be used as an identifier name. Indeed, it can be imagined that it is not rare for a

programmer to want to create a variable named “ default”.

40

5. CFlat 0.1 Compiler

As mentioned in the abstract, as part of my thesis| have written a compiler to
implement a subset of the features described in section 4. | have tried to focus on
implementing my new features only rather than features that are already in C++. The
implemented features are listed in Table 1, which isin section 3. | call this subset of
features CFlat 0.1.

For ssimplicity, the compiler translates CFlat code coming from standard in to C++
code on standard out, rather than dealing with files. The input and output files can then
be specified using the redirection facilities of the command line program being used
(usually “<” and “>").

In addition to the regular language features, | have added one just for this
compiler that allows the inclusion of C++ code within CFlat code. Thisisdone by
enclosing code within “cpp {” and “}”. So it would look like this:

cpp {
/[C++ code

}

This causes whatever is contained in the block to be copied verbatim to the output file,
which is then compiled with a C++ compiler.

The compiler was written using lex for the lexical analyzer and yacc for the
parser. It was tested with GNU flex and bison. Whereas lex and yacc normally expect C
code within the actions that are executed when arule is matched, | have used C++ code
instead to make the compiler easier to write. This hasworked fine, at least using flex and
bison, because they copy the code within these actions verbatim. Aslong as| use a C++

compiler to compile the output from flex and bison, there have been no problems.

41

The compiler does not execute asfast as it could, nor was that my goal sinceitis
mainly for testing purposes. For example, whereas a hash table is normally used for the
symbol table handler, | have used the “map” template class in the C++ standard library.
The drawback of thisis that maps are sorted automatically, which is unnecessary for the
symbol table. Optimization of the output code has likewise not been a priority.

Since the compiler is not meant to be complex, | have not yet dealt with variable
scopes. This means that, for now, the same variable name cannot be declared twice
within a program, regardless of where the declaration is placed in regards to curly braces
({ and}).

For ease of testing and debugging the compiler, | have also written two pieces of
test code. One prints the token names of each token in theinput (i.e. it stops after the
lexical analysis phase). The other printsa*“diagram” of the parse tree, showing the parse
treein ahierarchical fashion after it has been built but before the code generation step.

The CFlat compiler architecture is shown in Fig. 10.

42

parser.y++ code_generator.cc, .h
lexer.l error.h
main.cc
@ parse_tree.cc, .h
« parser.h
parser.y++
lex.yy.c E;:::;::EE:: symbol_table _handler.cc, h
tree_helpers.cc
tree_info.cc, .h
typeinfo.cc
Cer+ D |
test.ct @

test.cc

Compile error messages (stderr)

test
Fig. 10. CFlat 0.1 compiler architecture

6. Example Programs

The programs shown here are the ones used to test the CFlat 0.1 compiler. The
last two are meant to contain compile errors and are for testing the error messages of the
compiler.

/* Test program for CFlat.

Tests select, I/O ranged case statements, inputting into a variable.
*/

<< "Enter a grade as a nunber: ";
>> int grade;

sel ect (grade) {
case 0: << "Really, really bad";
case 1..49: << "F";
case 50..59: << "
case 60..69: << "
case 70..79: << "

» W QQ

case 80..89: << "

case 90..99

case 100: //test 2 case statements in a row
<< "A+";

case else: << "Invalid grade";

<< u\nu

/*Test programfor CFlat. Does computations on
the prices of products and the nunber of itens
bought in a store.*/

doubl e prices[-5..20];

prices[-5..-1] := 2.99;

prices[0] := 4.99;

prices[1..3] := 1.49;

prices[4..10] := 99.95;

prices[11..15] := prices[..-1];
prices[16..] := 0.0; //reserved spots

/* Print all the prices*/
for (int i := prices.li..prices.ui) {
<< "ltem" << i;
select (prices[i]) { /* sel ect statement taking
a double (only ints allowed in C++) */
case 0: << " is free.\n";
case else: << " costs $" << prices[i] << ".\n";

}

/*Array of bought itens */

i nt bought[] := {-5, -2, 18, 2, 5, 7};
int numBought[] := {2, 1, 3, 9, 1, 0};
doubl e priceSum : = 0;

/* Print their prices in reverse order, and the final price */

for (int j := bought.ui..bought.li step -1) {
<< "Bought " << numBought[j] << " of item"
<< bought[j] << " for $" << prices[bought[j]] << " each.\n";
priceSum := priceSum + prices[bought[j]] * nunmBought[j];

}

<< "Total spent: $" << priceSum << "\n";

prices[..] := 0.0; /1 everything' s sold

/*Test program for CFlat.
Cal cul ates the sum and average of both the even and odd integers
from1l to 100.*/

int[] Integers := {1..100};
int sum
for (int start := Integers.li..Integers.li+1) {
sum : = 0;
for (int x := start..Integers.ui step 2)
sum : = sum + I ntegers[x];
<< "Sum of ";
sel ect (start) {
case 0: << "odd";
case 1: << "even";
}
<< " npunmbers from1l to 100: " << sum << "\n";
<< "Average: " << sum/ (Integers.size \ 2) << "\n";
}

/* This file tests m scellaneous features that didn't get
tested in the other test prograns */

for (int i :=10..1 step -1) << i; [/test negative step val ues

[*Test C++ blocks. This shouldn't give a conpile error once the
final result is conmpiled with a C++ conpiler. */

cpp {
class X {};

/* Testing nested comments

int x := 2; /* Assign 2 to x */

<< X; /* Nothing gets printed because we're in a coment */
*/

<< 3 - 2; /[Test subtraction

45

/* This file contains code that is supposed to produce
appropriate conpile errors by the CFl at conpiler.*/

int var := 5.2; /I Assi gning a double to an int

int vy;

y[1]; //Subscripting a non-array

double z := 5.2;

int x[10];

x[2..2z]; /1'Using a non-integer in a range subscript

x[z..2]; //Test the left operand too

int z := 0; /1 Duplicate definition

doubl e p[]; /Il Declare an array w thout specifying a size

for (int i :=1..x) {} //Use an array in a for loop range

for (int j[] :=1..10) {} //Use an array as the | oop counter

X[z]; /] Subscript an array with a double

int u:=x; [/ Assign an array to a scalar

X[5.2] :=1; [/Assignnent where subscript isn't an integer

x[{1, 2}] :=1; [//:=using an array (this isn't inplenented yet)
x[5] := {1, 2}; /I Assignnent of array to scalar with subscripting
>> X; /[/lnput into an array isn't allowed

<< X; [/ Qutput isn't either

{10..1} * 2; [//Miltiply an array by a scalar (not allowed yet)
z.li; //Can't access array properties for a scalar

z.ui; [//ditto

z.size; //ditto

X.property; [//Use a property other than li, ui and size

5.2\ 2; /1 Only integers can be divided with integer division

int v[10..8]; /I Declare an array with upper bound < | ower bound
int Integers := {1..100}; //Declare an array, forgetting the []
C; /1 Use an undecl ared vari abl e

for (int k :=1..10 step 0); //Step O

/*Can't have an array in a select statement yet - requires an ==
operator, which nmust be programmed in CFlat rather than built in*/
sel ect (x) {

case {1, 2}: {} //Can't have an array in a case statenent

case {3}..{5}: {} [//Dtto

}

47

/*This file tests errors that produce the generic "syntax error”
nmessage, which causes conpilation to stop. For that reason it
nust be separate fromthe other error checking program*/

int z .= 1;

int r[] :={z, 2, 1}; //Create an array using a variable

48

7. Conclusion And Future Goals

In my opinion, CFlat accomplishes my goal of improving on C++. | find it both
easier to program in and more powerful.

It isdifficult to say at this point whether the CFlat 0.1 compiler should be used as
a base to write a complete compiler for the language. It may need to be changed to
output an intermediate language other than C++ code, such as the Register Transfer
Language (RTL) used by gcc [GCC Home Page, 2004]. It might also be easier to modify
an existing C++ compiler to produce a CFlat compiler, due to the similarity of the
languages.

The compiler still needs to become more efficient before it could be used for
complex programs. It doesn't do any optimization, although existing optimizers could be
incorporated into compilation, either by using the one in g++ or by optimizing the
intermediate language, depending on the direction taking for the compiler's output
language. At any rate, there is definitely alot of work that needs to be done on the
compiler to bring it on par with existing C++ compilers.

There are till other decisionsto be made for the language specification itself. For
example, | am as yet unsure whether garbage collection should be made afeature. | am
considering including it but making it optional, though more investigation is needed.
There are also many features | would like to include or consider including, but which
wouldn't fit into thisthesis report.

Of courseg, at this stage, the language isin a“beta’ state; since there are not
millions of lines of CFlat code in existence, any part of the language could change at any

time. Ideally, before deciding for sure whether certain features are “good”, a compiler

49
should be written and the features should be used to write large programs. | have not had
the time to do that sufficiently for this project.

Overdl, | am quite pleased with CFlat and the results of this work.

50

8. References

Bright, Walter, “The D Programming Language”, Dr. Dobb's Journal, vol 27, no 2, p 36,
Feb 2002, further information available at http://www.digitalmars.com/d/.

GCC Home Page, RTL — GNU Compiler Collection (GCC) Internals, [Internet],
[Updated 23 JUL 2004], [Cited 23 JUL 2004]. Available at
http://gcc.gnu.org/onlinedocs/gecint/RTL .html.

Burgess, Mark (origina author), GNU C Programming Tutorial (Edition 4.1), [Internet],
[Updated 23 SEP 2003], [Cited 30 JUN 2004], Available at
http://www.crasseux.com/books/ctut.pdf.

Josuttis, Nicolai M., The C++ Sandard Library —a Tutorial and Reference, Addison
Wedley, Indianapolis, IN, 1999.

Kernighan, Brian, Ritchie, Dennis, The C Programming Language Second Edition,
Prentice Hall Software Series, Prentice Hall PTS, Upper Saddle River, New
Jersey, 1988.

Linden, Peter van der, Just Java 2, Fourth Edition, Sun Microsystems Press, Palo Alto,
Cadlifornia, 1999.

Polivka, Raymond P., Pakin, Sandra, APL: The Language and Its Usage, Prentice-Hall,
Inc., Englewood Cliffs, New Jersey, 1975.

Sebesta, Robert W., Concepts of Programming Languages Sxth Edition, Addison
Wedley, Colorado Springs, 2003.

Stroustrup, Bjarne, The C++ Programming Language, Third Edition, Addison Wesley,
Indianapalis, IN, 1997.

V oegele, Jason, Programming Language Comparison, [Internet], [Updated 21 NOV
2003], [Cited 30 JUN 2004], Available at
http://www.jvoegel e.com/software/langcomp.html.

51

Appendix A. Features That Break C++
Thefollowing list of changesin CFlat from C++ cause C++ code to be invalid.

Thelist istherefore useful in writing a program to convert C++ to CFlat.
New keywords have been introduced: “function”, “returns’, “yield”, “yields’, and
“select”. ldentifiers with those names must be renamed.
Programs may need to begin with “#include <lang>" since features that were built into
C++ may now be defined there instead (section 4.1).
Function headers have anew syntax (section 4.2.1).
Overloaded operators have new syntax to match the function syntax (section 4.2.5).
Array parameters to functions with [] will have to use * instead, sincein CFlat thereis
adistinction between arrays and pointers (section 4.3.1).
Where pointer arithmetic is done on arrays, it will have to be done on the address of
the array instead; otherwise it will be considered an array operation (section 4.3.6).
Since nested comments are allowed now, C++ block comments containing an
unbal anced number of “/*” and “*/” pairs will have to be rewritten (section 4.6.2).
Division of two integers with the “/” operator no longer does integer division; “\” must
be used instead (section 4.6.3).
floating-point constants with adecimal but no fractional part following the decimal
(e.g. “4.”) are no longer alowed (section 4.6.4).
The assignment operator has been changed from “=" to “:=" (section 4.6.5).

The “->" operator is no longer available, and must be replaced with “.” (section 4.6.6)

52
There are not as many primitive casts defined; these will have to be defined in a
library and included if existing code using certain implicit castsis to continue to
function (section 4.6.8).

The “default” keyword is gone, and must be replaced with “ case else” (section 4.6.9).

53

Appendix B. CFlat 0.1 Grammer

The below grammar isin EBNF. Keywords arein bold. Nonterminalsarein
italics.

program => statenents

statenments => statenent statenments
| €

statenent => expr ;

decl aration ;

for _header statenent

{ statenents }

i nput _st at enent ;

out put _st atenment ;

select (expr) statenent

case_stnt statenent

CPP_CODE

case_stnt => case expr

case expr .. expr

case el se :

i nput _statenent => input_statenent single_input
| single_input

single_input => >> new or_old variable

out put _statement => out put_statenent single_out put
| single_output

singl e_out put => << expr

| << STRING
for_header => for (new or_old variable := expr .. expr maybe step)
maybe step => step signed_intconst

| €

expr => assignment _expr
expr + expr
expr - expr
expr * expr
expr [/ expr
expr \ expr

(expr)

| NTCONST
FLOATCONST
vari abl e
variable [expr]
array_const ant

variable [expr .. expr]
variable [.. expr]
variable [expr ..]
variable [..]

- expr

variabl e . | DENT

vari abl e => | DENT

array_constant => { array_value_|ist }

array_value list => array value list , array list_item
| array list_item

array _list_item=> FLOATCONST
| signed_intconst

| signed_intconst .. signed_intconst
assi gnnment _expr => new_or_ol d_variable := expr
| variable [expr] := expr

| variable [expr .. expr] := expr

| variable [.. expr] := expr
| variable [expr] = expr
variable [..] := expr

type_specifier => int | double
new or_old variable => declaration
vari abl e

decl aration => type_specifier I DENT array_info

| type_specifier array_info | DENT

| type_specifier |DENT
array_info => [| NTCONST]

| [signed_intconst .. signed_ intconst]

| []
signed_i ntconst => - | NTCONST
| | NTCONST

55

Appendix C. CS4997 Summary Sheet

PHASE TITLE ESTIMATE ACTUAL (approx.)
PERSON- COMPLETION PERSON- COMPLETION
HOURS DATE HOURS DATE
Grammar for CFlat 0.1 3 May 8 35 May 8
Lexical Analyzer 5 May 16 2.75 May 11
Write grammar in yacc 7 May 20 1 May 18
Symbol table handler 1 May 20 2 May 18
Reading 10 July 18 2.5 July 5
Yacc parser and code 30 June 3 July 31
generator 59.5
Write test programs 2 May 27 5.2 July 23
Test and debug 20 June 13 155 July 31
Thesis outline 5 June 17 3 May 21
Thesis body 60 July 18 32 August 9
Prepare for seminar 20 July 31 11 August 6
Thesis revision 5 August 12 7.05 August 9

Total 166 August 12 145 August 9

